Neutron-Antineutron Oscillation Experiments

W. M. Snow Indiana University/CEEM Project X Workshop

Why do we think that B is violated?

Neutron-antineutron oscillations in nuclei

Free neutron oscillations

Experimental requirements

Thanks for slides: Tony Mann, Yuri Kamyshkov, Ed Kearns,...

$n \leftrightarrow \bar{n}$ oscillations — are they "too crazy"?

But neutral meson $|q\bar{q}\rangle$ states oscillate -

$$K^0, B^0$$
 2nd order weak K^0, B^0

And neutral fermions can oscillate too -

Neutron is a long-lived neutral particle (q_n<10⁻²¹e) and can oscillate into an antineutron. No oscillations have been seen yet.

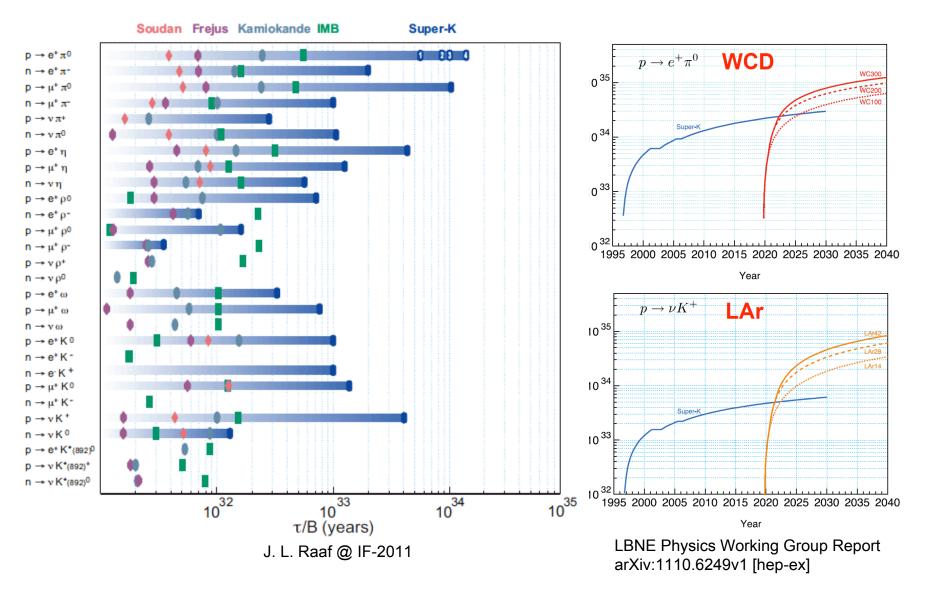
Need interaction beyond the Standard Model that violates Baryon number (B) by 2 units. No experimental observation of B violation yet. Should we expect B violation?

B,L are Probably Not Conserved

No evidence that either B or L is locally conserved like Q: where is the macroscopic B/L force? (not seen in equivalence principle tests).

Baryon Asymmetry of Universe (BAU) is not zero. If B(t=after inflation)<<BAU (otherwise inflation is destroyed, Dolgov/Zeldovich), we need B violation.

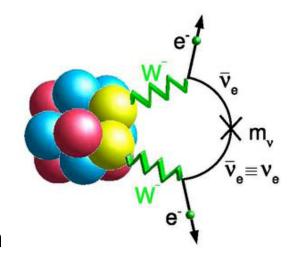
Both B and L conservation are "accidental" global symmetries: given $SU(3)\otimes SU(2)\otimes U(1)$ gauge theory and matter content, no dimension-4 term in Standard Model Lagrangian violates B or L in perturbation theory.

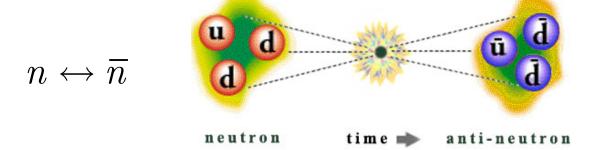

Nonperturbative EW gauge field fluctuations (sphalerons) present in SM, VIOLATE B, L, B+L, but conserve B-L. Very important process for trying to understand the physics of the baryon asymmetry in the early universe

How to search for B violation experimentally?

Searches for B Violation (Nucleon Decay and Neutron-Antineutron Oscillation) Probe Different Physics

Mode	Nucleon decay	N-Nbar oscillations
effect on B and L	$\Delta B=1, \Delta L=1,$ others $\Delta (B-L)=0,2,$	$\Delta B=2, \Delta L=0,$ $\Delta (B-L)=2$
Effective operator	$L = \frac{g}{M^2} QQQL$	$L = \frac{g}{M^5} QQQ \overline{Q} \overline{Q} \overline{Q}$
Mass scale probed	Grand Unified (GUT) scale	>electroweak scale (< <gut)< td=""></gut)<>


Nucleon Decay


Connection of $\Delta B=2$ processes to neutrino physics

Several experiments are currently searching for Majorana neutrinos in neutrinoless double beta decay. Neutrinoless double beta decay means ΔL = 2, thus violating (B-L) by 2.

$$\nu \leftrightarrow \overline{\nu}$$

♣ If (B-L) is violated by 2 and quark-lepton unification happens then ∆B=2 and thus neutron-antineutron oscillations should exist

How are neutron-antineutron oscillations described?

Neutron-Antineutron Oscillations: Formalism

$$\Psi = \begin{pmatrix} n \\ \overline{n} \end{pmatrix}$$
 n-nbar state vector

 $\alpha \neq 0$ allows oscillations

$$H = \begin{pmatrix} E_n & \alpha \\ \alpha & E_{\bar{n}} \end{pmatrix}$$
 Hamiltonian of n-nbar system

$$E_n = m_n + \frac{p^2}{2m_n} + U_n$$
; $E_{\bar{n}} = m_{\bar{n}} + \frac{p^2}{2m_{\bar{n}}} + U_{\bar{n}}$

Note:

- α real (assuming T)
- $m_n = m_{\overline{n}}$ (assuming CPT)
- $U_n \neq U_{\overline{n}}$ in matter and in external B $[\mu(\overline{n}) = -\mu(n)]$ from CPT

Neutron-Antineutron transition probability

For
$$H = \begin{pmatrix} E + V & \alpha \\ \alpha & E - V \end{pmatrix}$$
 $P_{n \to \overline{n}}(t) = \frac{\alpha^2}{\alpha^2 + V^2} \times \sin^2 \left[\frac{\sqrt{\alpha^2 + V^2}}{\hbar} t \right]$

where V is the potential difference for neutron and anti-neutron.

Present limit on $\alpha \le 10^{-23} eV$

Contributions to V:

- <Vmatter>~100 neV, proportional to density
- <Vmag>=μB, ~60 neV/Tesla; B~10nT-> Vmag~10⁻¹⁵ eV
- <Vmatter> , <Vmag> both $>> \alpha$

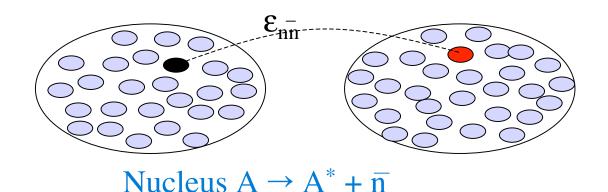
For
$$\left[\frac{\sqrt{\alpha^2 + V^2}}{\hbar}t\right] <<1$$
 ("quasifree condition") $P_{n \to \bar{n}} = \left(\frac{\alpha}{\hbar} \times t\right)^2 = \left(\frac{t}{\tau_{n\bar{n}}}\right)^2$

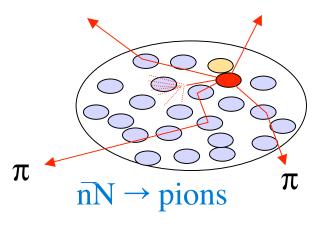
Figure of merit=
$$NT^2$$
 N=#neutrons, T="quasifree" observation time

How to Search for N-Nbar Oscillations

Figure of merit for probability:

 NT^2

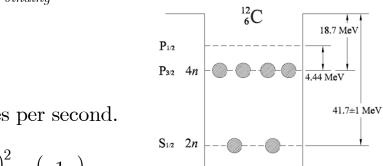

N=total # of free neutrons observed


T= observation time per neutron while in "quasifree" condition

When neutrons are in matter or in nucleus, n-nbar potential difference is large->quasifree observation time is short

B field must be suppressed to maintain quasifree condition due to opposite magnetic moments for neutron and antineutron

- (1) n-nbar transitions in nuclei in underground detectors
- (2) Cold and Ultracold neutrons


Suppression of n→nbar in intranuclear transitions

Neutrons inside nuclei are "free" for the time: $\Delta t \sim \frac{\hbar}{E_{binding}} \sim \frac{\hbar}{30 MeV} \sim 4.5 \times 10^{-22} s$

each oscillating with "free" probability
$$= \left(\frac{\Delta t}{\tau_{n\bar{n}}}\right)^2$$

and "experiencing free condition" $N = \frac{1}{\Lambda t}$ times per second.

Transition probability per second:
$$P_A \doteq \frac{1}{\tau_A} = \left(\frac{\Delta t}{\tau_{n\bar{n}}}\right)^2 \times \left(\frac{1}{\Delta t}\right)$$

Intranuclear transition (exponential) lifetime:
$$\tau_{\rm A} = \frac{\tau_{n\bar{n}}^2}{\Delta t} = R \leftrightarrow \tau_{n\bar{n}}^2$$

where $R \sim \frac{1}{\Delta t} \sim 4.5 \leftrightarrow 10^{22} s^{-1}$ is "nuclear suppression factor"

Actual nuclear theory suppression calculations for $^{16}O, ^{2}D, ^{56}Fe, ^{40}Ar$ by C. Dover et al; W.Alberico et al; B.Kopeliovich and J. Hufner, and most recently by Friedman and Gal (2008) corrected this rough estimate within a factor of 2

PHYSICAL REVIEW D 78, 016002 (2008)

Realistic calculations of nuclear disappearance lifetimes induced by $n\bar{n}$ oscillations

E. Friedman^{1,*} and A. Gal^{1,+}

¹Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel (Received 27 March 2008; published 14 July 2008)

Realistic calculations of nuclear disappearance lifetimes induced by $n\bar{n}$ oscillations are reported for oxygen and iron, using \bar{n} nuclear potentials derived from a recent comprehensive analysis of \bar{p} atomic X-ray and radiochemical data. A lower limit $\tau_{n\bar{n}} > 3.3 \times 10^8$ s on the $n\bar{n}$ oscillation time is derived from the Super-Kamiokande I new lower limit $T_d(O) > 1.77 \times 10^{32}$ yr on the neutron lifetime in oxygen. Antineutron scattering lengths in carbon and nickel, needed in trap experiments using ultracold neutrons, are calculated from updated \bar{N} optical potentials at threshold, with results shown to be largely model independent.

DOI: 10.1103/PhysRevD.78.016002 PACS numbers: 11.30.Fs, 13.75.Cs, 36.10.Gv

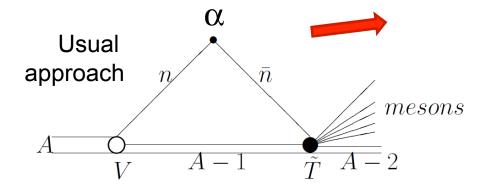
General approach: one of the neutrons in the nucleus transforms to anti-neutron and the latter is annihilated with other nucleons to pions

Vacuum N-Nbar transformation from bound neutrons:

Best result so far from Super-K in Oxygen-16

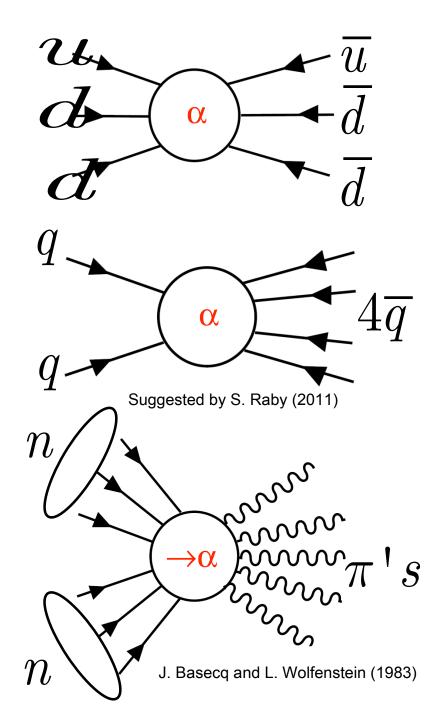
$$au_{_{^{16}O}} > 1.89 \leftrightarrow 10^{32} yr \quad (90\% \text{ CL})$$
 $\Re \quad \frac{24 \text{ observed candidates;}}{24.1 \text{ exp. background}}$

$$au_{nucl} = R \times au_{n\overline{n} \text{ free}}^2$$

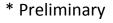

if
$$R_{_{16}_O} = 5 \cdot 10^{22} s^{-1}$$
 (from Friedman and Gal 2008)

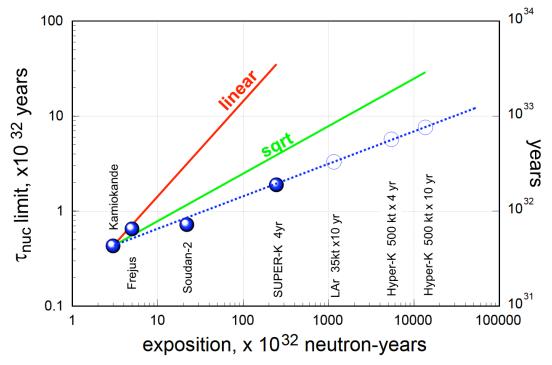
$$\Rightarrow \tau \text{(from bound)} > 3.5 \times 10^8 s \text{ or } \alpha < 2 \times 10^{-24} eV$$

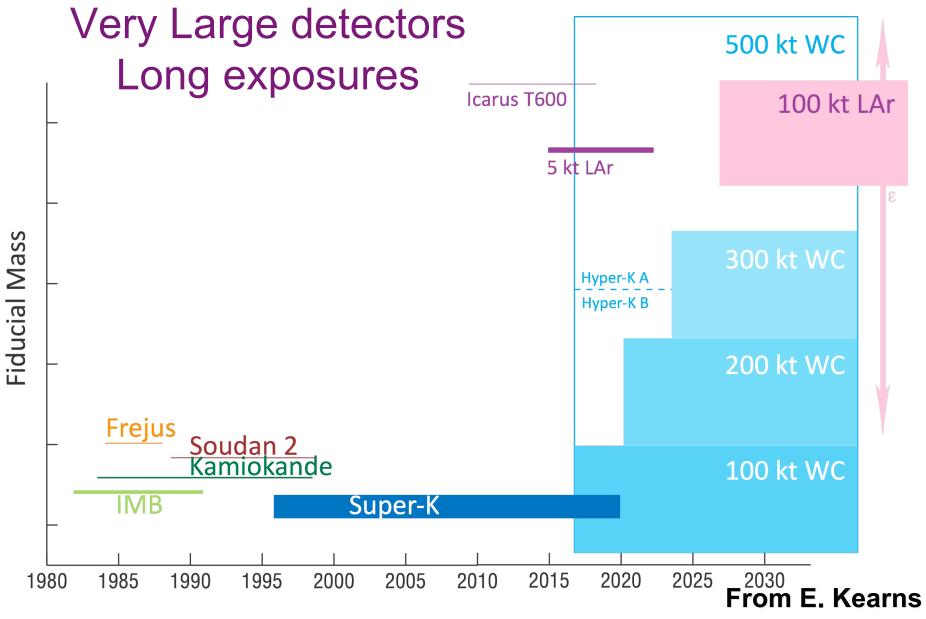
 \leftrightarrow 16 times higher than sensitivity of ILL expt.


ILL limit (1994) for free neutrons:
$$\tau_{n\overline{n}} > 0.86 \times 10^8 s$$

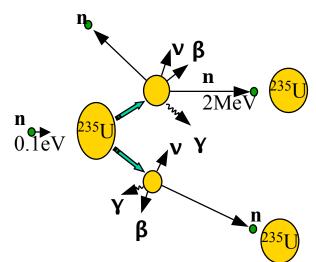
Theoretical nuclear NNbar suppression model is incomplete


All these processes \rightarrow include the same amplitude α and result in the same indistinguishable final state (of $\sim 5 \pi s$)

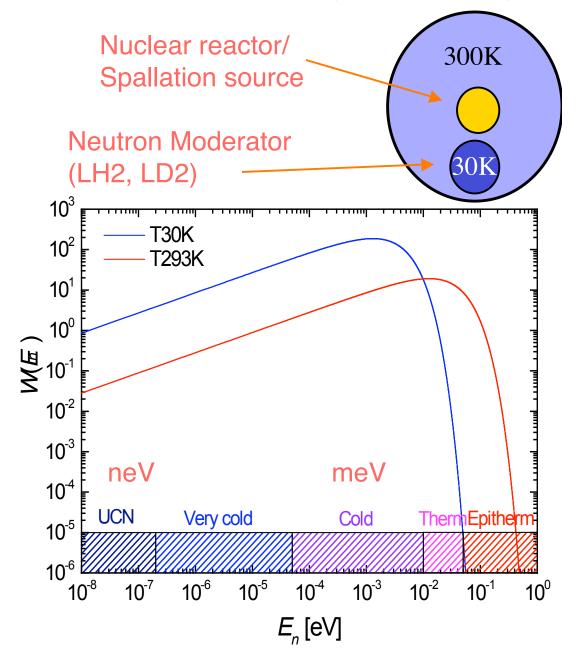

Existing intranuclear NNbar limits need to be re-evaluated


Bound neutron N-Nbar search experiments

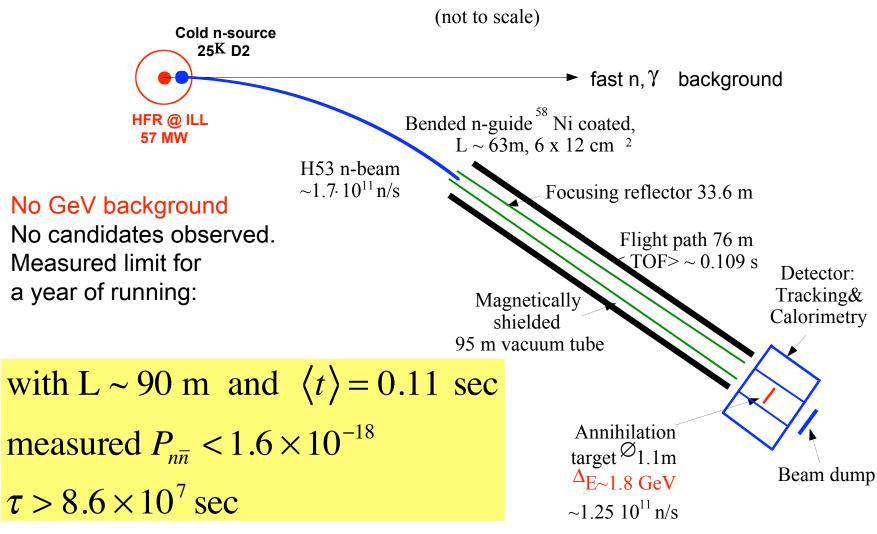
Experiment	Year	A	n·year (10 ³²)	Det. eff.	Candid.	Bkgr.	τ _{nucl} , yr (90%
Kamiokande	1986	O	3.0	33%	0	0.9/yr	$>0.43\times10^{32}$
Frejus	1990	Fe	5.0	30%	0	4	$>0.65\times10^{32}$
Soudan-2	2002	Fe	21.9	18%	5	4.5	$>0.72\times10^{32}$
SNO *	2010	D	0.54	41%	2	4.75	>0.301×10 ³²
Super-K	2011	O	245	12.1%	24	24.1	>1.89×10 ³²



- From Kamiokande to Super-K atmospheric v background is about the same ~ 2.5 /kt/yr.
- Large D₂O, Fe, H₂O detectors are dominated by backgrounds; LAr detectors are unexplored
- Observed improvement is weaker than SQRT due to irreducible background and uncertainties of efficiency and background.
- Still possible to improve a limit but impossible to claim a discovery.


Can improved detector technology reduce the neutrino background for nnbar in nuclei?

"Slow" Neutrons: MeV to neV



~MeV neutrons from fission or spallation, thermalized in ~ 20 collisions in ~ 100 μs

Т	E	λ	V
(K)	(meV)	(A)	(m/sec)
300	25	1.6	2200
20	2	6.4	550

N-Nbar search at ILL (Heidelberg-ILL-Padova-Pavia)

Baldo-Ceolin M. et al., Z. Phys. C63,409 (1994).

Quasifree Condition: B Shielding and Vacuum

µBt<https://www.ncbe.nlm.nih.gov/html ILL achieved |B|<10 nT over 1m diameter, 80 m beam, one layer 1mm shield in SS vacuum tank, 1% reduction in oscillation efficiency (Bitter et al, NIM A309, 521 (1991). For new experiment need |B|<~1 nT

If nnbar candidate signal seen, easy to "turn it off" by increasing B

V_{opt}t<<**ħ**:

Need vacuum to eliminate neutron-antineutron optical potential difference.

P<10⁻⁵ Pa is good enough, much less stringent than LIGO

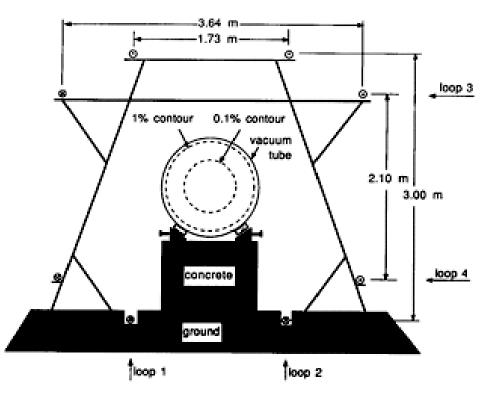
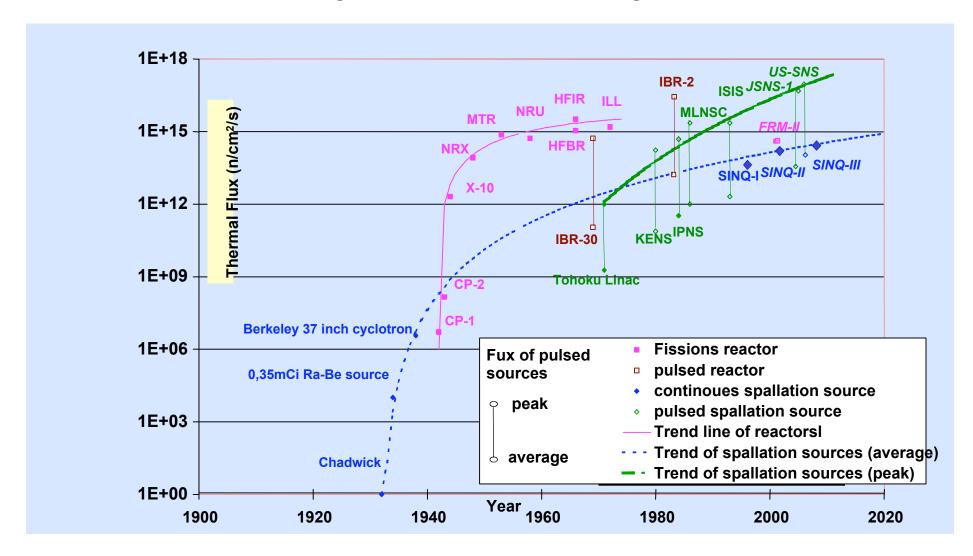



Fig. 10. The transverse field compensation system. Loops 1 and 2 are under 49 A current and compensate the horizontal field component; loops 3 and 4 are under 120 A current and compensate the vertical field component.

The conceptual scheme of antineutron detector

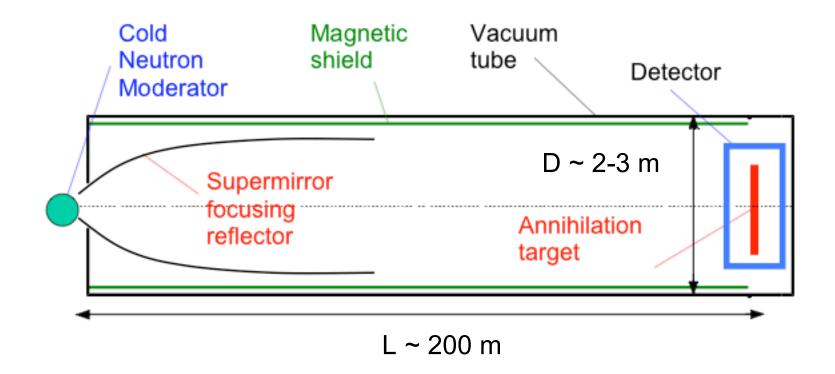


$$\overline{n} + A \rightarrow \langle 5 \rangle \ pions \quad (1.8 \text{ GeV})$$

Annihilation target: ~100µ thick Carbon film

 $\sigma_{annihilation} \sim 4 \; Kb \qquad \sigma_{nC \; capture} \sim 4 \; mb$ vertex precisely defined. No background was observed

How to Improve the Experiment? Not so Easy. Max neutron flux/brightness: ~unchanged for ~4 decades



Neutron flux is increasing only slowly with time R. Eichler, PSI

Better Free Neutron Experiment (Horizontal beam shown: vertical possible)

need slow neutrons from high flux source, access of neutron focusing reflector to cold source, free flight path of ~200m

Improvement on ILL experiment by factor of ~1000 in transition probability is possible with existing n optics technology (see G. Greene talk)

NNbar Summary

New physics beyond the SM can be discovered by NNbar search

Improvement in free neutron oscillation probability of a factor of ~1,000 is possible

If discovered:

• n→nbar observation would violate B-L by 2 units, establish a new force of nature, illuminate beyond SM physics, and may help to understand matterantimatter asymmetry of universe

If NOT discovered:

• will set a new limit on the stability of "normal" matter via antimatter transformation channel. Will constrain some scenarios for B-L violation and "post-sphaeleron" baryogenesis

Summary

New physics beyond the Standard Model can be discovered by NNbar search

Experiments with free neutrons possess very low backgrounds (sharp vertex localization): ILL experiment observed no background. Interpretation of result is independent of nuclear models. Any positive observation can be turned off experimentally with the application of a small magnetic field.

Sensitivity of free neutron experiment for NNbar transition rate can be improved by factor of ~1000 using existing technology [Combination of improvements in neutron optics technology, longer observation time, and larger-scale experiment]. Further improvements in a free neutron experiment can comes from neutron optics technology development (see Geoff Greene talk).

US high-energy intensity frontier complex could in principle provide the type of dedicated source of slow neutrons needed for NNbar experiment.